Balancing Redox Reactions by the Ion-Electron Method

- 1. Write the skeletal equation containing the oxidizing and reducing agents and the products in ionic form. Assign oxidation numbers to each atom.
- 2. Separate the equation into two half-reactions.
- 3. Balance the atoms (except the 0 and H) in each half reaction separately. This is called *mass balance*.
- 4a. For reactions in *acidic* medium, add H₂O to balance the oxygen atoms and H⁺ to balance the hydrogen atoms.
- 4b. For reactions in *basic* medium, first balance the atoms as you would for an acidic solution. Then, for each H⁺ ion, add OH⁻ ion to both sides of the half-reaction. Whenever H⁺ and OH⁻ appear on the same side, combine them to make H₂O.
- 5. Add electrons to one side of each half-reaction to equalize the charges. Electrons are added to the reactant side of a reduction half-reaction and to the product side of an oxidation half-reaction. The number of electrons added to the one side of the half-reaction should make the total charge of that side equal to the charge on the other side. This procedure is called a *charge balance*.
- 6. Multiply the half-reactions through by the appropriate coefficients to balance the number of electrons as needed.
- 7. Add the two half-reactions, and check the final equation by inspection. Reduce the balanced equation to lowest terms (coefficients).

Balancing Redox reactions

Balance the following redox reactions:

1. $Sn + NO_3^- \rightarrow SnO_2 + NO_2$ (acidic solution)

 BrO_{3} + $I^{-} \rightarrow I_{2}$ + Br^{-} (acidic solution)

2.

3.	H ₂ O	₂ + Fe ²⁺ –	→ Fe ³⁺ + H ₂ O	(acidic solution)
4.	MnO ₂ +	BiO ₃ - →	MnO4 ²⁻ + Bi ³⁺	(basic solution)
5.		$Cl_2 \rightarrow$	ClO ₄ - + Cl-	(basic solution)
6.		$P_4 \rightarrow$	PH ₃ + HPO ₃ ²⁻	(basic solution)
7.	Sb + N	'0₃ ⁻ →	Sb2O5 + NO	(acidic solution)